Σύντομη ιστορία των Μαθηματικών
Ο άνθρωπος χρειάστηκε 1.000.000 χρόνια για να οδηγηθεί στην αφηρημένη έννοια των αριθμών.
Ο Homo sapiens (300.000 χρόνια πριν) κάνει μια μικρή αρίθμηση με κλαδιά.
Ο Homo sapiens sapiens (100.000 χρόνια πριν) χρησιμοποιεί κάποιες αριθμητικές λέξεις.
Οι κυνηγοί-τροφοσυλλέκτες (70.000-20.000 χρόνια πριν) καταλάβαιναν την απλή πρόσθεση, τον πολλαπλασιασμό και την αφαίρεση. Το μοίρασμα της τροφής τους σημαίνει ότι κατανοούσαν τη διαίρεση.
Η παλαιότερη ένδειξη αριθμητικής καταγραφής βρέθηκε στη Σουαζιλάνδη της Νότιας Αφρικής και είναι μια περόνη μπαμπουίνου με 29 εμφανείς εγκοπές που χρονολογείται από το 35.000 π.Χ. Μοιάζει με τα «ημερολογιακά ραβδιά» που ακόμα χρησιμοποιούν στη Ναμίμπια για να καταγράφουν την παρέλευση του χρόνου. Άλλα κόκαλα, της νεολιθικής περιόδου, έχουν βρεθεί στη Δυτική Ευρώπη. Μια κερκίδα λύκου που βρέθηκε στην Τσεχία και χρονολογείται από το 30.000 π.Χ. φέρει 55 εγκοπές σε δύο σειρές ανά πέντε, οι οποίες μάλλον αποτελούν καταγραφή θηραμάτων.
Ένα από τα πιο ενδιαφέροντα ευρήματα είναι το αποκαλούμενο κόκαλο Ισάνγκο, που βρέθηκε στις όχθες της λίμνης Έντουαρντς, ανάμεσα στην Ουγκάντα και το Κονγκό. Έχει χρονολογηθεί το 20.000 π.Χ. και μοιάζει να είναι κάτι παραπάνω από πίνακας θηραμάτων. Μικροσκοπική ανάλυση αποκάλυψε πρόσθετες εγκοπές, οι οποίες μπορούν να συσχετισθούν με τις φάσεις της σελήνης.
Μέσω της αστρονομίας, της αστρολογίας ή της κοσμολογίας, ο ουρανός άσκησε τη μεγαλύτερη επίδραση στην εξέλιξη των μαθηματικών.
2500 π.Χ. Οι Σουμέριοι ζύγιζαν, υπολόγιζαν τη γη σε «σαρ», μετρούσαν τα υγρά σε «κα», χρησιμοποιούσαν κλάσματα και είχαν σύστημα αριθμών με βάση το 60.
2.000-538 π.Χ. Οι Βαβυλώνιοι έφτασαν σε υψηλό επίπεδο μαθηματικής κουλτούρας, μεγαλύτερη των σύγχρονων Αιγυπτίων.
Το Πυθαγόρειο θεώρημα το είχαν ανακαλύψει και οι Βαβυλώνιοι τον 16ο π.Χ. αιώνα (1.000 χρόνια πριν από τη γέννηση του Πυθαγόρα!!!). Οι Βαβυλώνιοι γνώριζαν τις τέσσερις πράξεις και τις ρίζες, λύνανε προβλήματα πρώτου και δεύτερου βαθμού, υπολόγιζαν εμβαδόν ορθογωνίων τριγώνων, παραλληλόγραμμων, τραπεζίων καθώς και το εμβαδόν του κύκλου (π=3 αντί π=3,14).
Το αριθμητικό τους σύστημα είχε ως βάση το 60 , ήταν μη ψηφιακό, θεσιακό, χωρίς υποδιαστολή και χωρίς μηδέν. Υποστηρίζεται ότι γνωρίζανε και το δεκαδικό σύστημα.
Το εξηνταδικό σύστημα των Βαβυλωνίων έχει επιβιώσει μέχρι σήμερα στο μέτρημα του χρόνου. Έτσι π.Χ. όταν οι Βαβυλώνιοι ήθελαν να εκφράσουν τον αριθμό 75, έλεγαν «1,15», όπως κι εμείς σήμερα τα 75 λεπτά τα εκφράζουμε σαν 1 ώρα και 15 λεπτά.
5000-332 π.Χ. Οι Αιγύπτιοι χρησιμοποιούν σύστημα αριθμών με βάση το 10. Το σύστημά τους ήταν δεκαδικό, επαναληπτικό, μη θεσιακό.
2852 π.Χ. Ο Κινέζικος πολιτισμός χρησιμοποιεί σύστημα αριθμών με βάση το 60. Κάνανε αστρονομικούς υπολογισμούς 1500 χρόνια πριν από τους αρχαίους Έλληνες.
Γνώριζαν γραμμικές εξισώσεις, αόριστες εξισώσεις, αρνητικούς αριθμούς και το π.. Τα μαθηματικά τους ήταν ανώτερα των Βαβυλωνίων και των Αιγυπτίων.
Το παλαιότερο κινέζικο μαθηματικό κείμενο είναι το Τσόου Πέϊ Σαουντσινγκ, που γράφτηκε μεταξύ του 500 και του 200 π.Χ.
Το αριθμητικό σύστημα που χρησιμοποιούμε σήμερα είναι ψηφιακό, δεκαδικό, θεσιακό, με υποδιαστολή και μηδέν.
Ψηφιακό, γιατί οι μονάδες του παριστάνονται με διαφορετικά σύμβολα και όχι επανάληψη του ίδιου συμβόλου, π.χ. το τρία έχει το δικό του σύμβολο (3), ενώ σε ένα μη ψηφιακό σύστημα θα συμβολιζόταν επαναλαμβάνοντας τρεις φορές το σύμβολο για το 1. Στο βαβυλωνιακό, το αιγυπτιακό, το ρωμαϊκό και πολλά άλλα αριθμητικά συστήματα της αρχαιότητας το τρία παριστάνεται ως ΙΙΙ.
Δεκαδικό, επειδή κάθε φορά που συμπληρώνονται δέκα μονάδες δημιουργείται μια μονάδα ανωτέρας τάξης. Οι αριθμοί από το 0 μέχρι το 9 είναι μονοψήφιοι. Ο αριθμός 10 γράφεται ως ένα και μηδέν δηλαδή μια μονάδα ανωτέρας τάξης (δεκάδα) και καμιά απλή μονάδα.
Θεσιακό, γιατί η αξία του κάθε ψηφίου καθορίζεται από τη θέση του μέσα στον αριθμό. Έτσι στο 4737 από δεξιά προς τα αριστερά η αξία αυξάνεται.
Όταν θέλουμε να χρησιμοποιήσουμε υποδιαιρέσεις της μονάδας (δέκατα, εκατοστά, χιλιοστά, …) τότε η υποδιαστολή μας δείχνει που σταματούν οι ακέραιες μονάδες και που αρχίζουν οι κλασματικές.
Έτσι αυτό που μας επιτρέπει να διαφοροποιήσουμε το 31,2 από το 3,12 είναι η υποδιαστολή.
Εξηνταδικό, αφού απαιτούνται 60 απλές μονάδες για να δημιουργήσουν μια μονάδα ανωτέρας τάξεως, μια εξηντάδα. Με εξήντα εξηντάδες (3.600 απλές μονάδες) φτιάχνουμε μια μονάδα ανωτέρας τάξεως, μια τρισχιλιοεξακοσάδα, κ.ο.κ Έτσι ο αριθμός 125 απαρτίζεται από δύο (δύο εξηντάδεις=120) και το πέντε (πέντε μονάδες), ενώ ο αριθμός 634 απαρτίζεται από το δέκα (δέκα εξηντάδες=600) και το 24 (24 μονάδες).
1410-1530 μ.Χ. Οι Ίνκας έφτιαξαν ένα αριθμητικό σύστημα με βάση το 10, για να παρακολουθούν τις καθημερινές δραστηριότητες του μεγάλου πληθυσμού τους (Μέσα σε 200 χρόνια είχαν πληθυσμό 6-12.000.000 άτομα). Το αριθμητικό τους σύστημα βασιζόταν στα κουιπού. Τα κουιπού ήταν περίπλοκα συστήματα σπάγκων με κόμπους που χρησίμευαν για την καταχώρηση και αποθήκευση αριθμητικών πληροφοριών.
Το σύστημά τους ήταν δεκαδικό, θεσιακό, μη ψηφιακό.
Οι Ίνκας έκαναν τις πράξεις τους χρησιμοποιώντας ένα είδος άβακα, το γιουπάνα. Το γιουπάνα ήταν μια πλάκα χωρισμένη σε τετράγωνα πάνω στα οποία τοποθετούσαν σπόρους καλαμποκιού που τους μετακινούσαν από τετράγωνο σε τετράγωνο για να κάνουν τους λογαριασμούς τους.
9000 π.Χ.-1000 μ.Χ. Οι Μάγια είχαν αριθμητικό σύστημα εικοσαδικό, μη ψηφιακό, θεσμικό και με ειδικό σύμβολο για το μηδέν. Το εικοσαδικό σύστημα οφείλεται ενδεχομένως στη χρήση των δαχτύλων τόσο των χεριών όσο και των ποδιών, για τη στοιχειώδη μέτρηση. Οι Μάγια είχαν δύο ημερολόγια. Το πρώτο, το «Τζόλκιν», ήταν θρησκευτικό και αποτελούταν από 260 μέρες. Περιλάμβανε 13 μήνες των 20
ημερών. Το δεύτερο, το «αστικό» ημερολόγιο, ονομαζόταν «Χάαμπ» και ήταν ένα ηλιακό ημερολόγιο 635 ημερών. Είχε 18 μήνες των 20 ημερών και έναν μικρό μήνα των 5 ημερών (αποφράδες μέρες). Οι αρχαίοι Αιγύπτιοι είχαν ένα ημερολόγιο με 12 μήνες των 30 ημερών και ένα κουτσουρεμένο μήνα των 5 ημερών.
Σύμπτωση; Κοινό μαθηματικό τέχνασμα για να ξεπεραστεί η δυσκολία που παρουσιάζει η διαίρεση 365 δια 12; Ή κάτι άλλο; Ποιος ξέρει…
3000 π.Χ.-700 μ.Χ. Οι Ινδοί έχουν το δεκαδικό σύστημα αρίθμησης, το οποίο χρησιμοποιείται παγκοσμίως και το οποίο διέδωσαν οι Άραβες.
Οι μεγαλύτεροι Άραβες μαθηματικοί ήταν ο αλ Χβαρίσμι (780-850 μ.Χ.), πατέρας της Άλγεβρας, τίτλο που διεκδικεί από το δικό μας Διόφαντο και ο Πέρσης ποιητής και αστρονόμος Ομάρ Χαγιάμ (1048-1131 μ.Χ.)
Η Πρώτη προσπάθεια εισαγωγής των Ινδοαραβικών αριθμητικών ψηφίων στην Ευρώπη έγινε από τον Φιμπονάτσι (1180-1250 μ.Χ.). Για να τα υιοθετήσουν όμως οι Ευρωπαίοι χρειάστηκαν ακόμα 400 χρόνια. Ακόμα και στο τέλος του 16ου αιώνα, η αποδοχή των αρνητικών αριθμών, των ρητών αριθμών (που ανακάλυψε ο Βραγμαγκούπτα τον 70 μ.Χ. αιώνα) και του μηδέν δεν ήταν πλήρης (πολλοί θεωρούσαν το μηδέν δημιούργημα του Διαβόλου).
Όλα τα συστήματα του άνθρωπου περιλαμβάνουν την πενταδική, δεκαδική και εικοσαδική αρίθμηση. Επαναλαμβανόμενα θέματα των αριθμητικών συστημάτων του ανθρώπου είναι: μια βάση που σχετίζεται με την αρίθμηση με τα δάκτυλά μας (πέντε=ένα χέρι, δέκα=δύο χέρια, είκοσι=δάχτυλα των χεριών και των ποδιών), το σύστημα τιμής – θέσης και το μηδέν ……
600 π.Χ. – 300 μ.Χ. Τα επιτεύγματα των Ελλήνων, για 1000 χρόνια επισκιάζουν όλα τα πνευματικά επιτεύγματα των επόμενων 1500 ετών. Οι Έλληνες όμως στηρίχτηκαν στις παλαιότερες αρχαίες κοινωνίες των Βαβυλωνίων και Αιγυπτίων.
Χρησιμοποιούσαν δύο είδη αριθμητικών συστημάτων με βάση το 10: το Ηρωδιανό ή Αττικό και το Ιωνικό ή Αλεξανδρινό. Δε χρησιμοποιούσαν τιμές θέσεις όπως έκανα οι Βαβυλώνιοι και όπως γίνεται σήμερα. Επίσης δε χρησιμοποιούσαν το μηδέν και τα κλάσματα. Οι Έλληνες θεμελίωσαν τη γεωμετρία ως μια αμιγώς μαθηματική ενασχόληση: διατύπωσαν και απέδειξαν θεωρήματα.
Το πρώτο Ελληνικό μαθηματικό βιβλίο (σε παπύρους) είναι τα Στοιχεία του Ευκλείδη (300 π.Χ.)
Ο Πυθαγόρας (580-500 π.Χ.) υπήρξε ο σπουδαιότερος μαθηματικός όλων των εποχών. Αυτός έπλασε τη λέξη μαθηματικά, δηλαδή εκείνο που έχουμε μάθει. Ο Πυθαγόρας μεταμόρφωσε την επιστήμη των μαθηματικών σε στοιχείο ελεύθερης μόρφωσης.
Ο Θαλής ο Μιλήσιος (640-546 π.Χ.) Οι γραμμές για το Θαλή δεν ήταν κάτι που μπορείς να δεις στην άμμο, αλλά ήταν αντικείμενα σκέψης στη φαντασία μας. Πήρε φυσικά σχήματα και τα έκανε νοητικά σχήματα. Όλα αυτά ήταν επανάσταση για την εποχή του.
Επίσης έκανε λογικές απαγωγές, που τον οδήγησαν από τη μία αλήθεια που αφορούσαν τα θεωρητικά σχήματά του στην ανακάλυψη κι άλλων αληθειών, αυτό επηρέασε τη Δυτική σκέψη για 2.000 έτη.
Ο Πλάτωνας θεωρούσε τα Μαθηματικά προπαρασκευαστικό μάθημα για τη φιλοσοφία. Η εμβάθυνση στον κόσμο των νοητικών αναπαραστάσεων, που είναι ο κατεξοχήν κόσμος που ζει ένας μαθηματικός, οδηγεί στον κόσμο των ιδεών του
Πλάτωνα. Αυτός ο κόσμος, όχι μόνο είναι « αντικειμενικός » , αλλά είναι ο μόνος που δυνάμεθα να κατανοήσουμε εις βάθος. Παράδειγμα: η βαθύτερη, δυνατή κατανόηση του παράξενου και μυστηριώδους κβαντικού κόσμου, επιτυγχάνεται με την ανάλυση της περίφημης εξίσωσης του Scrodinger , η οποία κατοικεί στον κόσμο που πρώτος περιέγραψε ο Πλάτωνας. Είναι εκπληκτικό ότι οι Αρχαίοι πρόγονοί μας είχαν φθάσει σε τόσο βαθιά επίπεδα κατανόησης της ουσίας των πραγμάτων. Δεν είναι τυχαίο ότι σήμερα οι περισσότεροι ώριμοι μαθηματικοί είναι Πλατωνιστές.
Η «Οδός Μαθηματικής» είναι το πρώτο ελληνικό μαθηματικό εγχειρίδιο της νεότερης ιστορίας μας, γραμμένο από τον Μεθόδιο Ανθρακίτη και τον Μπαλάνο Βασιλόπουλο, για χρήση μαθητών στα ελληνικά σχολεία την εποχή της Τουρκοκρατίας.
Οι σπουδαιότεροι Μαθηματικοί όλων των εποχών είναι:
Ο Πυθαγόρας, ο Ευκλείδης, ο Θαλής, ο Αρχιμήδης, ο Γκαλουά, ο Καρτέσιος, Ο Νεύτων, ο Γκάους, ο Φερμά, ο Ντέντεκιντ, ο Κάντορ, ο Νόιμαν, ο Γκέντελ, ο Ράσελ, ο Γαλιλαίος, ο Ώιλερ και ο Ουάϊλς. Στην κορυφή της πυραμίδας των Μαθηματικών πρέπει να τοποθετήσουμε τον Αρχιμήδη, τον Νεύτωνα και τον Γκάους.
Γυναίκες μαθηματικοί ήταν η Υπατία (370-415 μ.Χ.), η Μαρία Γκαετάνα Ανιέζι (1718-1799 μ.Χ.), η Σοφί Ζερμαίν (1776-1831), η Αουγκούστα Άντα Κινγκ, κόρη του Λόρδου Βύρωνα, θεωρείται σήμερα η πρώτη προγραμματίστρια υπολογιστών στον κόσμο, η Σοφία Κοβαλέβσκαγια (1850-1891) και η καθηγήτρια Μαθηματικών του Πανεπιστημίου του Μπέρκλει Τζούλια Ρόμπινσον (1919-1985).
Ζώα που ξέρουν να μετρούν είναι: τα δελφίνια, οι φάλαινες, οι φώκιες, οι σκίουροι, οι αρουραίοι, τα έντομα και οι παπαγάλοι.
Μια εφαρμογή των Μαθηματικών είναι οι Ηλεκτρονικοί Υπολογιστές. Οι Η/Υ είναι υπολογιστικές μηχανές δυαδικών αριθμών (0 και 1). Τα πάντα στους Η/Υ ξεκινούν από την αποθήκευση, την πρόσθεση ή την αφαίρεση δυαδικών αριθμών. Άρα στον πυρήνα τους βρίσκονται οι αριθμοί.
Οι Η/Υ ξεπήδησαν , με ένα τρόπο απρόσμενο και ειρωνικό, από την αποτυχία των μαθηματικών να φέρουν εις πέρας το περίφημο σχέδιο του Χίλμπερτ. Ο Χίλμπερτ το 1900, ήλπιζε να αυτοματοποιήσει τη μαθηματική σκέψη, να βρίσκει με μηχανικό τρόπο την απόδειξη οποιουδήποτε θεωρήματος. Όμως, ο Κούρτ Γκαίντελ απέδειξε το 1931 ότι υπάρχουν θεωρήματα που δεν έχουν αποδείξεις ( Θεώρημα της μη πληρότητος του Γκαίντελ ). Και μερικά χρόνια αργότερα , ο Τούρινγκ (1937) έδωσε τη χαριστική βολή στα μεγαλεπήβολα σχέδια του Χίλμπερτ, αποδεικνύοντας ότι δεν υπάρχει καμιά μηχανή που βρίσκει αποδείξεις θεωρημάτων. Τούτο αποτέλεσε τη βάση για την παραπέρα δουλειά του Τούρινγκ σε μηχανές αποκρυπτογράφησης του κώδικα « Αίνιγμα» του γερμανικού ναυτικού κατά τον Β΄ Παγκόσμιο Πόλεμο και τελικά την έλευση του υπολογιστή (ENIAC) με τον Τζον Φον Νόιμαν το 1945.
Η καλπάζουσα ανάπτυξη των υπολογιστών επηρέασε βαθιά τα μαθηματικά. Δημιούργησε έναν νέο σημαντικό κλάδο των μαθηματικών που λέγεται «Θεωρία του Υπολογισμού». Δηλαδή, στα κλασικά αντικείμενα των μαθηματικών, που ήταν από την εποχή των αρχαίων Ελλήνων οι Αριθμοί και η Γεωμετρία προστέθηκαν ισότιμα και οι Αλγόριθμοι(οι λεπτομερείς ακολουθίες εντολών που ακολουθούν οι υπολογιστές).
Η πρώτη μεγάλη ανακάλυψη που βασίστηκε στο παιχνίδι με τους Η/Υ είναι η Θεωρία των Φράκταλ στα μαθηματικά (σύνθετες γεωμετρικές καμπύλες, που δε μετασχηματίζονται σε απλά σχήματα αν τις μεγεθύνουμε και η διάστασή τους βρίσκεται ανάμεσα σε ακέραιους αριθμούς) και η θεωρία του χάους στις φυσικές επιστήμες.
Σήμερα η θεωρία της πολυπλοκότητας (επιστήμη του Χάους), των δυναμικών συστημάτων και των φράκταλ (δύο απλά φράκταλ είναι η «Χιονονιφάδα βαν Κωχ» και το «τρίγωνο Σιερπίνσκι»), είναι από τους πιο ζωντανούς τομείς επιστημονικής έρευνας, με εφαρμογές στη Βιολογία, τα Οικονομικά, τη Σεισμολογία, τις Τηλεπικοινωνίες, ……
Η ανακάλυψη στην Ιατρική του αξονικού και αργότερα του μαγνητικού τομογράφου (Νόμπελ Ιατρικής 1979 και 2003) στηρίζονται στη λύση μαθηματικών προβλημάτων, ο δε αξονικός τομογράφος στηρίζεται στη λύση ενός συγκεκριμένου μαθηματικού προβλήματος που λέγεται Αντιστροφή του μετασχηματισμού Radom. Το 2006 ανακαλύφθηκαν τρεις καινούργιες απεικονιστικές τεχνικές, ο λειτουργικός μαγνητικός τομογράφος, το PET (Τομογράφος εκπομπής πρωτονίων) και το SPECT (Toμογράφος εκπομπής Φωτονίων) οι οποίες επιτρέπουν να παρατηρούμε τον εγκέφαλο εν λειτουργία. Το PET στηρίζεται ακριβώς στον ίδιο μαθηματικό φορμαλισμό που στηρίζεται και ο αξονικός τομογράφος, ενώ το αντίστοιχο μαθηματικό πρόβλημα για το SPECT είναι πολύ πιο δύσκολο και παρέμενε άλυτο για πολλά χρόνια.
Όταν το 1977 το διαστημόπλοιο Βόγιατζερ ξεκινούσε το μοναχικό του ταξίδι στο αχανές διάστημα , οι υπεύθυνοι της ΝΑΣΑ , σκεπτόμενοι μια πιθανή συνάντηση του με εξωγήινα όντα, τοποθέτησαν στο εσωτερικό του ηχογραφημένα πολιτικά μηνύματα, την Πέμπτη του Μπετόβεν και μια πλάκα επικοινωνίας όπου είχαν χαρακτεί μαθηματικά σύμβολα. Μαθηματικά : ο εφιάλτης της σχολικής ζωής για πολλούς , πάνω από όλα όμως, μια αυτόνομη γλώσσα ή ακριβέστερα: μια συμπαντική γλώσσα….
Όπως ο Κολόμβος , που ψάχνοντας έναν καινούργιο δρόμο για την Κίνα ανακάλυψε την Αμερική, οι μέθοδοι που αναπτύχθηκαν για να απαντηθούν τα διάφορα άλυτα μαθηματικά προβλήματα, οδήγησαν σε κάθε είδους ανακάλυψη, έτσι που όλο και περισσότεροι μαθηματικοί άρχισαν να συμμετέχουν στο κυνήγι. Κλασσικό παράδειγμα είναι ο τετραγωνισμός του κύκλου, ένα πρόβλημα που ενώ η τελική, αρνητική απάντηση που έλαβε το1882, μετά από περίπου 2300 χρόνια ζωής, έχει πολύ μικρή σημασία στα μαθηματικά, προκάλεσε την ανάπτυξη πλούσιων και γόνιμων θεωριών που βρίσκονται σήμερα στο κέντρο της μαθηματικής έρευνας. Με τον ίδιο τρόπο λειτούργησε και το τελευταίο «Θεώρημα του Φερμά» , που λύθηκε το 1995, από τον Άντριου Ουάιλς, ενώ είχε διατυπωθεί το 1637.
Λένε ότι τα άλυτα προβλήματα , όπως η «Η υπόθεση του Ρίμαν», ίσως είναι καλύτερο να παραμείνουν άλυτα, εξαιτίας των μεγάλων μαθηματικών ανακαλύψεων που έχουν επιτευχθεί κατά την προσπάθεια λύσης τους. Η υπόθεση Ρίμαν είναι ένα νέο «Γκράαλ-Δισκοπότηρο». Οι καθαροί μαθηματικοί αγαπούν το ταξίδι, την πρόκληση. Αγαπούν τα άλυτα προβλήματα. Το ταξίδι είναι πολύ πιο ενδιαφέρον από την άφιξη στον προορισμό. Τέτοια προβλήματα αποτελούν τη μαθηματική υλοποίηση του Καβαφικού : «Η Ιθάκη σου έδωσε το ωραίο ταξίδι.
Χωρίς αυτήν δε θα βγαινες στο δρόμο.
Άλλα δεν έχει να σε δώσει πια»
Πηγές:
«Το άπειρο και ο νους», Ρ. Ράκερ, Πανεπιστημιακές Εκδόσεις Κρήτης
«Ιερή Γεωμετρία», Δ. Ευαγγελόπουλος, Εκδόσεις Αρχέτυπο
«Η Μαγεία των παραδόξων», Μ. Γκάρντερ, Εκδόσεις Τροχαλία
«Τούρινγκ-Μαθήματα αγάπης», Χ. Παπαδημητρίου, Εκδόσεις Λιβάνη
«Οι άγριοι αριθμοί», Φ. Σογκτ, ΕκδόσειςΠόλις
«Η θεωρητική αριθμητική των Πυθαγορείων», Τ. Τέυλορ, Εκδόσεις Ιάμβλιχος
«Καταραμένα μαθηματικά», Κ. Φραμπέτι, Εκδόσεις Opera
«Η ιστορία των Μαθηματικών», Ρ. Μάνκιβιτς, ΕκδόσειςΑλεξάνδρεια
«Ο ταξιδευτής των μαθηματικών», Κ. Κλάουσεν, Εκδόσεις Κέδρος
«Μαθηματικά επίκαιρα», Τ. Μιχαηλίδης, ΕκδόσειςΠόλις.
Γράφει: Ο Κώστας Τραχανάς
Υποβολή απάντησης
Για να σχολιάσετε πρέπει να συνδεθείτε.
Γράφει: Ο Κώστας Τραχανάς
Θαλής και Φίλοι