ΔΥΝΑΜΙΚΗ ΓΕΩΜΕΤΡΙΑ
Δυναμικές και στατικές κατασκευές
Στην έρευνα για τη διδασκαλία των μαθηματικών ο όρος «λογισμικά δυναμικής γεωμετρίας» (DGS, dynamic geometry systems) χρησιμοποιείται για να περιγράψει έναν συγκεκριμένο τύπο λογισμικού, που κυρίως χρησιμοποιείται για την κατασκευή και ανάλυση των στόχων των προβλημάτων μέσα στη στοιχειώδη γεωμετρία. Τα λογισμικά δυναμικής γεωμετρίας στοχεύουν να αναπτύξουν τη χωρική αίσθηση (spatial sense) και τη γεωμετρική αιτιολόγηση, προσφέροντας «ευφυή» κατασκευαστικά εργαλεία με τα οποία οι χρήστες κατασκευάζουν ή χειρίζονται γεωμετρικά αντικείμενα που υπακούουν σε μαθηματικούς κανόνες (Mariotti, 2002) και παράλληλα δίνουν την δυνατότητα στους μαθητές να ενισχύσουν την ανάπτυξη θεωρητικών επιχειρημάτων (Noss & Hoyles, 1996).
Το περιβάλλον δυναμικής γεωμετρίας (DGE, dynamic geometry environment) είναι ένας μικρόκοσμος με την Ευκλείδεια γεωμετρία ως ενσωματωμένη υποδομή. Σε αυτό το υπολογιστικό περιβάλλον οι μαθητές –οι χρήστες γενικότερα– μπορούν να κατασκευάσουν τα γεωμετρικά σχήματα και να αλληλεπιδράσουν με αυτά (Hoyles C., 1993). Όπως αναφέραμε προηγουμένως, δύο ήταν τα απλούστερα όργανα για τις γεωμετρικές κατασκευές των αρχαίων Ελλήνων: κανόνας και διαβήτης. Τα δύο αυτά εργαλεία είναι τα απλούστερα και απολύτως αναγκαία και για τις κατασκευές μας σε περιβάλλον δυναμικής γεωμετρίας όπως του Sketchpad.
Η βασική εργαλειοθήκη των λογισμικών δυναμικής γεωμετρίας περιλαμβάνει εργαλεία για κατασκευή τμημάτων, κύκλων, γραμμών κ.ά. Όπως αναφέρουν οι Graumann et al. (1996, σελ.197), Kadunz (2002) και Sträßer (2002): «Ακόμα και αν τα προγράμματα λογισμικού DGS διαφέρουν στο εννοιολογικό και εργονομικό τους σχεδιασμό έχουν τα παρακάτω χαρακτηριστικά γνωρίσματα:
1. Ένα δυναμικό μοντέλο της Ευκλείδειας γεωμετρίας, δηλαδή τη δυναμική μοντελοποίηση των παραδοσιακών εργαλείων της Ευκλείδειας γεωμετρίας. Συγκεκριμένα το Sketchpad περιλαμβάνει:
α. εργαλεία που ολοκληρώνουν τα γεωμετρικά σχήματα. Αποτελούνται από το Εργαλείο κύκλου (αντικαθιστά το διαβήτη), το Εργαλείο σχεδίασης ευθυγράμμων αντικειμένων (αντικαθιστά το χάρακα χωρίς μετρήσεις) και το Εργαλείο σημείου.
β. εντολές που πραγματοποιούν τις γεωμετρικές σχέσεις, οι οποίες χαρακτηρίζουν τα γεωμετρικά σχήματα.
γ. τη λειτουργία του συρσίματος (dragging) που παρέχει έναν αντιληπτικό έλεγχο της ακρίβειας και ορθότητας της κατασκευής, και αντιστοιχεί στο θεωρητικό έλεγχο ώστε το σχήμα να είναι σύμφωνο με τη θεωρία της γεωμετρίας.
2. Οπτικοποίηση (visualization) της σχεδίασης ίχνους σημείων η κίνηση των οποίων εξαρτάται από τη μετακίνηση άλλων σημείων (γεωμετρικός τόπος – locus). Με αυτόν τον τρόπο παρουσιάζουμε τη διαδρομή ενός ή περισσότερων σημείων όταν σύρουμε ένα διαφορετικό σημείο.
3. Προσαρμοσμένα εργαλεία (Script files/Custom tools στο Sketchpad) ή Μακροεντολές (Macros στο Cabri II) για να συμπυκνώσουν ή να ομαδοποιήσουν μια σειρά βημάτων κατασκευής σε μία μόνο εντολή του λογισμικού.
Το λογισμικό δυναμικής γεωμετρίας Geometer’s Sketchpad όπως και άλλα λογισμικά δυναμικής γεωμετρίας:
1. Μπορεί να χρησιμοποιηθεί ως ακριβής χάρακας και διαβήτης
2. Επιτρέπει στους μαθητές να απεικονίζουν τις σχέσεις μεταξύ των αντικειμένων ενός γεωμετρικού σχήματος
3. Βοηθά τους μαθητές να κατανοήσουν τις έννοιες μέσω των κατασκευών. Σε αυτό συντελεί ιδιαιτέρα η ακρίβεια των σχημάτων
4. Έχει τη δυνατότητα να κρύβει τις περιττές λεπτομέρειες του σχήματος και να εκτελεί δύσκολες κατασκευές, απλοποιώντας έτσι τα βήματα με τη βοήθεια των κατάλληλων εργαλείων του λογισμικού.
Χάρη στους ενσωματωμένους περιορισμούς του λογισμικού δυναμικής γεωμετρίας ο χρήστης μπορεί:
1. Να κατασκευάσει ένα σχήμα με συγκεκριμένες ιδιότητες.
2. Να αλλάξει το μέγεθος και τον προσανατολισμό του.
3. Να διατηρήσει αμετάβλητα τα χαρακτηριστικά όταν σύρεται το σχήμα.
Τα χαρακτηριστικά του λογισμικού αντιστοιχούν στις δυνατότητες των παραδοσιακών γεωμετρικών εργαλείων:
1. Τα γεωμετρικά αντικείμενα μπορούν να μετασχηματιστούν, να μετακινηθούν, να συρθούν από μια κορυφή, και να αναδιαμορφωθούν, χωρίς να χάσουν τις ιδιότητες τους. Για παράδειγμα, αν κατασκευάσουμε δυο κάθετες ευθείες, τότε μπορούμε να τις σύρουμε προς τα επάνω ή να θέσουμε σε κίνηση την εικόνα με την εντολή Προσθήκης κίνησης (animation). Οι ευθείες θα διατηρήσουν την ιδιότητα με την οποία κατασκευάστηκαν, δηλαδή θα παραμείνουν κάθετες.
2. Μία μόνο εικόνα στην οθόνη αντιπροσωπεύει ολόκληρη κατηγορία γεωμετρικών αντικειμένων.
3. Στην κατασκευή των διαγραμμάτων οι μαθητές ενθαρρύνονται να πειραματιστούν με το αντικείμενο στην οθόνη και να παρατηρήσουν ότι αν σύρουμε τις κορυφές του σχήματος, μπορούμε να δούμε ότι η υπόθεση ισχύει για όλη την κλάση των σχημάτων. Αυτή η πειστική οπτική «απόδειξη» δεν αποτελεί απόδειξη της υπόθεσης, εφόσον μπορεί να υπάρξει κάποια περίπτωση που δεν εξετάστηκε. Δηλαδή μπορεί να πρόκειται για μια ειδική περίπτωση του προβλήματος ή ακόμα και να έχει εξεταστεί ένα παράδειγμα που αποτελεί εξαίρεση στον κανόνα.
Σε σχέση με την προηγουμένη έκδοσή του το λογισμικό δυναμικής γεωμετρίας Sketchpad v4 έχει μεταξύ άλλων επιπλέον και τις εξής δυνατότητες:
1. Μπορούμε να σύρουμε ένα γεωμετρικό αντικείμενο ενώ το έχουμε θέσει σε κίνηση.
2. Μπορούμε να κατασκευάσουμε πίνακες που αυτόματα συλλέγουν δεδομένα του σχήματος ενώ εφαρμόζουμε την εντολή Προσθήκης κίνησης σε αντικείμενο του σχήματος.
3. Τα αντικείμενα μπορούν να μετασχηματιστούν ακόμα και σε διαστάσεις που δεν είναι περιορισμένες μέσα στην οθόνη
4. Μπορούμε να επιλέξουμε πολλά γεωμετρικά αντικείμενα ταυτόχρονα και να τα επεξεργαστούμε (για παράδειγμα να τα αντιγράψουμε, να τα επικολλήσουμε, ή να τα διαγράψουμε)
5. Μπορούμε να αναιρέσουμε μια εργασία που έχουμε κάνει.
Εφόσον λυθεί ένα πρόβλημα κατασκευής, δηλαδή εάν το σχήμα στο λογισμικό περάσει τη «δοκιμή συρσίματος», ένα οπτικά επιβεβαιωμένο θεώρημα ή πρόταση μπορεί να αποδειχθεί με γεωμετρική απόδειξη. Η «δοκιμή συρσίματος» συνδέεται με την ορθότητα και λειτουργικότητα της κατασκευής. Τα εργαλεία, οι ορισμοί, οι τεχνικές εξερεύνησης, και οι οπτικές αναπαραστάσεις που συνδέονται με τη δυναμική γεωμετρία συμβάλλουν σε ένα μαθησιακό περιβάλλον αντίστοιχο του κανόνα και του διαβήτη (Laborde, 1998). Κατά συνέπεια, όταν λύνουμε τα προβλήματα κατασκευής μέσα στο περιβάλλον του λογισμικού σημαίνει ότι αποδεχόμαστε όχι μόνο όλες τις ευκολίες του λογισμικού, αλλά και ένα σύστημα λογικής στο οποίο τα παρατηρούμενα φαινόμενα αποκτούν νόημα.
Η καινοτομία ενός δυναμικού περιβάλλοντος συνίσταται στη δυνατότητα του άμεσου χειρισμού των σχημάτων (figures), και στην περίπτωση του Sketchpad αυτός ο χειρισμός έχει άμεση σχέση με το ενσωματωμένο σύστημα λογικής της Ευκλείδειας γεωμετρίας. Η δυναμική των σχημάτων του Sketchpad που πραγματοποιείται από τη λειτουργία του συρσίματος, διατηρεί την εγγενή λογική του, δηλαδή τη λογική της κατασκευής του. Έτσι τα στοιχεία ενός σχήματος συσχετίζονται με μια ιεραρχία ιδιοτήτων, και αυτή η ιεραρχία προϋποθέτει τη σχέση της τήρησης ορισμένων κανόνων λογικής. Η ερμηνεία της λογικής αυτής και η συνεχής αναφορά –παραλληλίζοντας το περιβάλλον του λογισμικού και του θεωρητικού μέρους της γεωμετρίας– αποτελεί τη βάση του προγράμματος διδασκαλίας.
Επιπλέον το περιβάλλον της δυναμικής γεωμετρίας δεν είναι ένα απλό αντίγραφο της Ευκλείδειας γεωμετρίας που περιέχει αλληλεπιδραστικές παραστάσεις. Σύμφωνα με τον Sherr, D. (2002) «Η ευκαμψία των αντικειμένων της δυναμικής γεωμετρίας καθιστά ορισμένες πτυχές της γεωμετρίας περισσότερο σαφείς που δεν θα ήταν εύκολο να φανούν σε μια στατική αναπαράσταση».
https://www.youtube.com/watch?v=eGIsuaQeR0M
1.1 Συστήματα δυναμικής γεωμετρίας και Προσαρμοσμένα εργαλεία
Έρευνες στη γνωστική ψυχολογία αναφέρουν ότι η γνωστική ικανότητα καθορίζεται από τη χρήση δομημένων μονάδων και προτύπων γνώσης. Αυτή η ιδέα χρησιμοποιείται από τους διδακτικολόγους Dörfler (1991), Dubinsky (1988) στο Kadunz (2002) οι οποίοι προτείνουν ότι η μάθηση των μαθηματικών επιτυγχάνεται με πρότυπα (patterns), μπλοκ (blocks), μονάδες (modules) και τμήματα (chunks). Η αποθήκευση των πληροφοριών σε οργανωμένα συστήματα με στόχο να συγκρατηθούν από την ανθρώπινη μνήμη σχηματίζει τα τμήματα (chunks). Σε ένα θέμα κατασκευής στο λογισμικό οι μακροεντολές έχουν μια παρόμοια λειτουργία: ομαδοποιούν έναν αριθμό κατασκευαστικών βημάτων μέσα σε μια εντολή και οργανώνουν όλη την κατασκευή χρησιμοποιώντας «γεωμετρικές εκφράσεις» (Kadunz, 2002).
Μακροεντολή είναι η συμπύκνωση μιας ακολουθίας εντολών που χρησιμοποιείται και ορίζεται με ένα σαφές όνομα σε όλη την υπόλοιπη εργασία. Εσωτερικά στο πρόγραμμα και κρυφά από το χρήστη ένας μακρό-αποσυμπιεστής αντικαθιστά το σημαίνον με την αρχική ακολουθία εντολών κάθε φορά που χρειάζεται να εκτελεστεί (Kadunz, 2002).
Τα προσαρμοσμένα εργαλεία (custom tools) στο λογισμικό δυναμικής γεωμετρίας Geometer’s Sketchpad δίνουν στο χρήστη τη δυνατότητα να ενθυλακώσει κατασκευές (encapsulate constructions) μέσα σε νέες εντολές καθώς και να δημιουργήσει έναν ολόκληρο μικρόκοσμο με δικά του εργαλεία. (Jackiw & Sinclair, 2004). Στην έκδοση 3 έχουμε τη δυνατότητα κατασκευής αρχείων εντολών με εγγραφή (gss αρχεία). Η διαδικασία που ίσως θύμιζε «μάθημα για προχωρημένους» είχε και τεχνικές δυσκολίες. Για παράδειγμα, στην κατασκευή fractals δεν υπήρχε δυνατότητα της αναδρομικής διαδικασίας παρά μόνο σε περιορισμένο αριθμό βημάτων. Στην έκδοση 4 η διαδικασία έχει απλοποιηθεί και δεν θυμίζει σε τίποτα τα gss αρχεία. Για να δημιουργήσουμε ένα νέο Προσαρμοσμένο εργαλείο, απλώς δημιουργούμε τη γενική κατασκευή που θέλουμε να καθορίσουμε ως εργαλείο. Αυτή η κατασκευή θα χρησιμεύσει και ως «ορισμός» κατά τη δημιουργία του εργαλείου.
Τα αρχεία εντολών αναπαριστούν μια αφαιρετική διαδικασία της εργασίας και επομένως ως «αφαιρετικά» εργαλεία απαιτούν ένα υψηλότερο επίπεδο εννοιολογικής κατανόησης απ’ ό,τι τα υπόλοιπα εργαλεία των σχεδίων (sketches). Από την προοπτική του σπουδαστή τα αρχεία εντολών στο Geometer’s Sketchpad παρέχουν ένα μηχανισμό που ενθυλακώνει τις κατασκευές με τη μορφή υπορουτίνων και μεθόδων γενίκευσης μιας ειδικής κατασκευής. Ο «σχηματισμός» των αρχείων εντολών μπορεί να βοηθήσει το μαθητή να «σχηματίσει» στο μυαλό του μια κατασκευή πρώτα ως σχηματική ολότητα και στη συνέχεια μέσα από διαφορετικά στάδια να οδηγηθεί σε πιο αφηρημένα επίπεδα γνωστικής αντίληψης. Επομένως, τα αρχεία εντολών μπορούν να λειτουργήσουν όχι μόνο ως μια μορφή συντόμευσης για μια μεγάλη συλλογή στοιχείων, αλλά και ως δομικές μονάδες της γνώσης, περιλαμβάνοντας την ίδια τη δομή και λειτουργία της συλλογής. Έτσι το αρχείο εντολών ως εννοιολογικό αντικείμενο (conceptual object) (Sfard, 1991) μπορεί να λειτουργήσει ως σημείο αναφοράς για την οργάνωση με την έννοια της κατηγοριοποίησης πληροφοριών και ως δομική μονάδα γνώσης μπορεί εύκολα να χρησιμοποιηθεί σε διαφορετικές κατασκευές (Patsiomitou, 2008c)
Σημείωση
Το κείμενο είναι απόσπασμα του κεφαλαίου «Δυναμική Γεωμετρία-Δυναμικά σχήματα στο Geometer’s Sketchpad» του έργου
Πατσιομίτου, Σ. (2010) Μαθαίνω Μαθηματικά με το Geometer’s Sketchpad v4 Εκδόσεις Κλειδάριθμος . Τόμος Α . ISBN 978-960-461-308
καθώς και της εργασίας
Πατσιομίτου, Σ. (2006): Τα λογισμικά δυναμικής γεωμετρίας ως μέσο διερεύνησης -επαλήθευσης και ανακάλυψης νέων σχέσεων. Ευκλείδης Γ΄, (65),.55-78
Σταυρούλα Πατσιομίτου (2005) Τα fractals ως πλαίσιο κατανόησης ακολουθίας και ορίων μέσω της έννοιας τω εμβαδών σε περιβάλλον βασισμένο στο δυναμικό χειρισμό μαθηματικών αντικειμένων. Διπλωματική εργασία Μεταπτυχιακού Προγράμματος, http://www.math.uoa.gr/me
Websites
http://mathforum.org/dynamic.html
http://www.dynamicgeometry.com/General_Resources/Recent_Talks.html
http://cermat.org/sites/default/files/el-demerdash-dissertation-2010.pdf
http://www.dynamicgeometry.com/General_Resources/Advanced_Sketch_Gallery.html
http://mste.illinois.edu/courses/ci407su01/students/south/ychen17/termproject/geometer.html
http://pauegitimdergi.pau.edu.tr/Makaleler/954366743_3.pdf
http://brage.bibsys.no/xmlui/bitstream/handle/11250/185858/Fosli,%20Wenche.pdf?sequence=1
http://wwwstaff.murdoch.edu.au/~kissane/dyngeom.htm
http://atcm.mathandtech.org/EP2008/pages/abstracts.html
http://www.highbeam.com/doc/1G1-219832397.html
http://atcm.mathandtech.org/EP2008/papers_full/2412008_15001.pdf
http://cirworld.com/index.php/ijct/article/view/1224/0
http://www.eera-ecer.de/ecer-programmes/pdf/conference/2/contribution/3593/
http://computerresearch.org/stpr/index.php/gjcst/article/view/104
http://iisit.org/IssuesVol5.htm
http://frombanda.com/s2/tesis/judul.php?keyword=Berpikir
http://eprints.uns.ac.id/4765/1/143221208201002501.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-22158-3_11#page-1
http://www.editlib.org/p/33188.
http://repository.upi.edu/tesisview.php?no_tesis=1833
http://www.km.fpv.ukf.sk/upload_publikacie/20131004_91147__1.pdf#page=12
http://link.springer.com/article/10.1007%2Fs10857-011-9168-x#
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/8707/1/etd.pdf
http://publikasi.stkipsiliwangi.ac.id/files/2014/01/Prosiding-31-Agustus-2013.pdf
http://www.leidykla.eu/fileadmin/Informacijos_mokslai/2011-56/31-41.pdf
www.iaset.us/download.php?fname
http://journalshub.com/mrp-admin/journal/pdf/1–ijcmt.pdf